

CS	1337.502,504	F16	 Program	#6	 	Page	1	of	2	

Program #6
Due: Thursday Dec 1st, 2016 at 11:30PM

Instructor Dr. Stephen Perkins
Office Location ECSS 4.702
Office Phone (972) 883-3891
Email Address stephen.perkins@utdallas.edu

Office Hours Tuesday and Thursday 10:30am – 11:30am

Tuesday and Thursday 1:00pm – 2:15pm
and by appointment

Grader Section 502: Sai Vamsi Muvva

sxm154231@utdallas.edu
Open Lab 2.103B1

 Section 504: Gopichand Vanka
gxv151030@utdallas.edu
Open Lab 2.104A1
Tuesday/Thursday 3:00pm – 5:00pm

Purpose

Demonstrate the ability to create a program that utilizes the Observer design pattern. Demonstrate
the ability to create abstract classes and implement derived classes. Demonstrate the ability to
create and iterate over an STL list that contains callback functions.

Assignment

You will be creating a program that implements the Observer design pattern. This design pattern
is utilized in almost all GUI systems and is the basis for distributed event handling. The goal of
the program is to create a class (the Subject class for this assignment) that has a private variable
(address) that can be modified via a standard mutator function (setAddress). This class has
additional member functions that allow other classes (the observers) to register and deregister
themselves with the Subject. If observers are registered with the subject, they will receive
notifications (via a callback function) if the subject’s address ever changes.

You are to create these observer classes BankObserver, SchoolObserver, CreditObserver. Each
of the observers must be derived from this abstract base class:

class AbstractObserver
{
 public:
 virtual void subjectChanged(string)=0;
 virtual ~AbstractObserver(){}
};

Each should override the subjectChanged method by printing the string argument to the screen
along with the name of it's class. For instance, the BankObserver might print the following:
 The BankObserver received an address change notification: <string>

CS	1337.502,504	F16	 Program	#6	 	Page	2	of	2	

You will then create one instance of the Subject class and one instance each of three derived
observer classes. You will register the instances of the observer classes with the instance of the
Subject class. When registered, you will make a change to the instance of the subject class (using
the setAddress method). This change should cause each of the registered observers to receive a
callback with notification of the change. The notify() method implements this functionality.
You must then deregister at least one of the observer instances and make a change to the subject
instance. This will result in only the remaining registered observers receiving notification.

Here is the Class prototype for the Subject:

class Subject
{
 private:
 string address;
 list<AbstractObserver *> observers;
 void notify();

 public:
 Subject(string addr);
 void addObserver(AbstractObserver& observer);
 void removeObserver(AbstractObserver& observer);
 string getAddress();
 void setAddress(string newAddress);
};

Requirements

 Your code must extend and use the AbstractObserver class
 Your code must implement the Subject class
 Your code must exhibit the use of the Observer design pattern
 Your code must exhibit the use of the STL list data type
 Your code must exhibit the use of an STL list iterator
 Your code must exhibit correct operation with registered callbacks
 Your code must exhibit correct operation with deregistered callbacks

Deliverables

You must submit your homework through ELearning. You must include your source files.

No late homework is accepted.

Observer Pattern (http://en.wikipedia.org/wiki/Observer_pattern)

The observer pattern is a software design pattern in which an object, called the subject,
maintains a list of its dependents, called observers, and notifies them automatically of any state
changes, usually by calling one of their methods. It is mainly used to implement distributed event
handling systems. The Observer pattern is also a key part in the familiar Model View Controller
(MVC) architectural pattern. [1] In fact the observer pattern was first implemented in Smalltalk's
MVC based user interface framework.[2] The observer pattern is implemented in numerous
programming libraries and systems, including almost all GUI toolkits.

